Simple Assumptions Scoop Calcs

Determine the air volume per minute consumed by the engine
CID $=388$
RPM $=6300$

$$
\begin{aligned}
& C F M_{\text {engine }}=C I D X \frac{R P M}{3456} \\
& C F M_{\text {engine }}=388 \times \frac{6300}{3456}=707
\end{aligned}
$$

Determine the inlet area of the scoop (in square feet)
Width $=1.5 / 12=0.125$
Length $=10 / 12=0.833$

$$
\begin{aligned}
& \text { Area }=\text { Width } X \text { Lenght } \\
& \text { Area }=(0.125 \times 0.833)=0.10
\end{aligned}
$$

To convert M PH into feet per minute

$$
F P M=M P H X 88
$$

The Volume per minute of air capable to pass through the scoop's inlet would be

$$
C F M_{\text {scoop }}=\text { Area } X F P M
$$

Assuming the engine's air comsumed is halved between each side, The M PH where the volume of air consumed by the engine equals the volume capability of the scoop would be

$$
\begin{aligned}
& M P H_{\text {static }}=\left(C F M_{\text {engine }} / \text { Area }\right) / 88 \\
& M P H_{\text {static }}= \\
& \frac{\frac{707}{2}}{\frac{0.10}{88}}=40
\end{aligned}
$$

The area of the supply 4" tubes would be

$$
\text { area }=\pi X r^{2}
$$

$$
\text { area }=3.14 \times 0.167^{2}=0.08
$$

Given the tube area is less than the scoop entrance, the air velocity will be 120% greater than the $\mathrm{MPH}_{\text {static }}$, thus about 50 MPH at 6300 rpms .

Speeds in excessive of where CFM s are equal will result in a pressure increase.
The ram effect pressure as per speed is

$$
P S I_{\text {ram }}=0.075 \times \frac{M P H^{2}}{4278}
$$

Given the ram effect will only be a fraction of a PSI, converting to Inches of water will provide interger values.

$$
\operatorname{InH}_{2} \mathrm{O}=\mathrm{PSI} X 27.7
$$

Chart - $\mathrm{InH}_{2} \mathrm{O}$ versus M PH

