[DeTomaso] NPC: Flash Steel

Larry - Ohio Time Larry at ohiotimecorp.com
Fri Dec 11 12:28:19 EST 2015


Flash Bainite
Radically cheaper, quicker and less energy-intensive to produce, Flash
Bainite is stronger than titanium by weight, and ductile enough to be
pressed into shape while cold without thinning or cracking. It's now being
tested by three of the world's five largest car manufacturers, who are
finding they can produce thinner structural car components that are between
30-50 percent lighter and cheaper than the steel they've been using, while
maintaining the same performance is crash tests. Those are revolutionary
numbers in the auto space.
Darren Quick did a good job explaining exactly how
<http://www.gizmag.com/stronger-steel-in-a-flash/18882/>  Flash Bainite is
produced in our original story, but in basic terms, you take regular,
off-the-shelf AISI1020 carbon steel, and instead of heat treating it for 10
minutes like costly alloyed steel, you put it through a roller-driven system
that induction-heats and liquid-cools the steel in a matter of 10 seconds or
so.
Generally, when you choose steel you're trading off between strength and
ductility. The hardest steels are the martensitic types, but their
crystalline structure makes them brittle and prone to cracking when you
press or bend them, so they need to be hot pressed. Flash Bainite breaks
this rule by delivering a specific strength some 7 percent higher than
martensitic steel but staying remarkably bendable to the point where it can
be cold pressed into shapes. The quick heating and cooling stages produce a
unique mix of fine martensite, bainite and carbides - if you want to get all
metallurgical
<http://amp.digitaledition.asminternational.org/i/211830-nov-dec-2013/50>
about it, knock yourself out
<http://www.asminternational.org/documents/10192/17082024/Pages+from+HTPro_D
ecember_2013_amp17111.pdf/61afa899-7863-4f83-9d5e-a7caa5e22eba> .
With such characteristics, you could theoretically take anything you're
making out of martensitic steel and make it stronger and vastly cheaper, or
take many shapes you're cold pressing out of more ductile steel and use
vastly thinner Flash Bainite to get the same strength. It sounded almost too
good to be true, but recent testing from a number of different parties
appears to be validating the original findings.
In July 2011, US Army tests
<http://webcache.googleusercontent.com/search?q=cache:De5vc6d6YPYJ:www.dtic.
mil/get-tr-doc/pdf%3FAD%3DADA588144+&cd=5&hl=en&ct=clnk&gl=au>  called it
"an extremely energy efficient and environmentally friendly process" and
concluded that "the costs to produce Flash Bainite should be extremely
reasonable and could enable widespread use for applications requiring very
high strength and adequate elongation, ductility, and toughness. Current
opportunities for flash bainite include armor and vehicle applications
requiring ultra-high strength steels for high specific strength, weight
reduction, and high cycle fatigue enhancement."
In 2013, a few auto manufacturers (who can't be named due to NDAs) began
running a series of tests to see how Flash Bainite might perform in an
automotive setting. Could it be cold pressed into the kinds of challenging
shapes required by automakers? In short, yes. Flash 1600 (Flash-processed
AISI1020) forms as well as the leading cold-stampable "advanced high
strength steel" DP1180 that's only 75 percent the strength. Here are some
sample parts displayed in March 2015, cold pressed with no noticeable
thinning:
These parts were created in the same sizes and thicknesses as the OEM parts,
so there's no weight saving per se, but the simple and energy-efficient
nature of the Flash forming process makes them 1/3 to 1/2 less expensive
than the process currently used in manufacture.
As this data became available, other auto manufacturers have started dipping
toes in the water as well. The Flash Project's Gary Cola tells us of another
major manufacturer that used Flash processed tubing to create car door
impact beams, roof rails and other parts that were built into full cars,
then roof crush tested to high test results. 
"This OEM found that Flash 1500 could offer a 1/3 mass reduction and cost
savings over the 'industry standard' DP1000 known at the time to be the
strongest hydroformable tube," Cola says. "During this development, it was
discovered that Flash 1500 (Flash-processed AISI1020) could be formed into
very tight bends, almost as tight as simply folding a sheet of paper." 
In Flash 1500 energy absorbing crush in this story's lead image, the bends
are twice the strength of the DP780 cans in cars today.
Another major manufacturer "that makes 10 million vehicles per year,"
according to Cola, tested Flash-processed steel on a structural/safety
component of a car that is 3 mm thick and 3 lb (1.4 kg) in weight in its
current form. Using the flash treatment, a part was created that weighs 2 lb
(0.9 kg) at 2 mm thick, and passes all the same tests - and the OEM
estimated it could be made at a cost savings.
There are only <https://en.wikipedia.org/wiki/Automotive_industry>  three
OEMs that can claim that kind of manufacturing capacity in the world. Only
one of them is headquartered in Detroit where the Flash Bainite team is
based, and it conveniently happens to be locked in a war of words
<http://www.fool.com/investing/general/2015/08/16/how-general-motors-will-co
mpete-with-fords-aluminu.aspx>  with a competitor that has chosen to go to
aluminum truck bodies instead of steel. Cola notes, "while aluminum is good
for hoods, decklids and door skins, Flash offers higher strength per pound
for structural safety components."
In short, Flash Bainite is starting to look suspiciously like the real deal,
pointing the way towards significantly lighter cars that are less expensive
and more environmentally friendly to produce, and every bit as safe in a
crash - and of course, that's just in the automotive world.
Another factor in Flash's favour is an extremely low capital cost of entry
for companies looking to get involved in the manufacturing process. 
"The entry point for Flash equipment is about US$300K and a one car garage,
while large format equipment would only cost $5M to generate about $75M in
annual sales," Cola tells us. "Imagine if 100s of fabrication shops around
the country could make higher performing steel than the Big Steel Industry
can in their $400M seven-story tall furnaces."
Having said that, there's currently no large scale manufacture up and
running. Cola and the Flash Project team are working toward developing their
own commercial manufacturing operation, but hoping to license the Flash
technology to other entrepreneurs to get it out into the market. If the
business side is managed well, this looks like a genuinely disruptive shift
in manufacturing. We'll keep an eye on it!
Larry (can you weld it?) - Cleveland
-------------- next part --------------
   Flash Bainite

   Radically cheaper, quicker and less energy-intensive to produce, Flash
   Bainite is stronger than titanium by weight, and ductile enough to be
   pressed into shape while cold without thinning or cracking. It's now
   being tested by three of the world's five largest car manufacturers,
   who are finding they can produce thinner structural car components that
   are between 30-50 percent lighter and cheaper than the steel they've
   been using, while maintaining the same performance is crash tests.
   Those are revolutionary numbers in the auto space.

   Darren Quick did a good job explaining exactly [1]how Flash Bainite is
   produced in our original story, but in basic terms, you take regular,
   off-the-shelf AISI1020 carbon steel, and instead of heat treating it
   for 10 minutes like costly alloyed steel, you put it through a
   roller-driven system that induction-heats and liquid-cools the steel in
   a matter of 10 seconds or so.

   Generally, when you choose steel you're trading off between strength
   and ductility. The hardest steels are the martensitic types, but their
   crystalline structure makes them brittle and prone to cracking when you
   press or bend them, so they need to be hot pressed. Flash Bainite
   breaks this rule by delivering a specific strength some 7 percent
   higher than martensitic steel but staying remarkably bendable to the
   point where it can be cold pressed into shapes. The quick heating and
   cooling stages produce a unique mix of fine martensite, bainite and
   carbides - if you want to [2]get all metallurgical about it, [3]knock
   yourself out.

   With such characteristics, you could theoretically take anything you're
   making out of martensitic steel and make it stronger and vastly
   cheaper, or take many shapes you're cold pressing out of more ductile
   steel and use vastly thinner Flash Bainite to get the same strength. It
   sounded almost too good to be true, but recent testing from a number of
   different parties appears to be validating the original findings.

   In July 2011, [4]US Army tests called it "an extremely energy efficient
   and environmentally friendly process" and concluded that "the costs to
   produce Flash Bainite should be extremely reasonable and could enable
   widespread use for applications requiring very high strength and
   adequate elongation, ductility, and toughness. Current opportunities
   for flash bainite include armor and vehicle applications requiring
   ultra-high strength steels for high specific strength, weight
   reduction, and high cycle fatigue enhancement."

   In 2013, a few auto manufacturers (who can't be named due to NDAs)
   began running a series of tests to see how Flash Bainite might perform
   in an automotive setting. Could it be cold pressed into the kinds of
   challenging shapes required by automakers? In short, yes. Flash 1600
   (Flash-processed AISI1020) forms as well as the leading cold-stampable
   "advanced high strength steel" DP1180 that's only 75 percent the
   strength. Here are some sample parts displayed in March 2015, cold
   pressed with no noticeable thinning:

   These parts were created in the same sizes and thicknesses as the OEM
   parts, so there's no weight saving per se, but the simple and
   energy-efficient nature of the Flash forming process makes them 1/3 to
   1/2 less expensive than the process currently used in manufacture.

   As this data became available, other auto manufacturers have started
   dipping toes in the water as well. The Flash Project's Gary Cola tells
   us of another major manufacturer that used Flash processed tubing to
   create car door impact beams, roof rails and other parts that were
   built into full cars, then roof crush tested to high test results.

   "This OEM found that Flash 1500 could offer a 1/3 mass reduction and
   cost savings over the 'industry standard' DP1000 known at the time to
   be the strongest hydroformable tube," Cola says. "During this
   development, it was discovered that Flash 1500 (Flash-processed
   AISI1020) could be formed into very tight bends, almost as tight as
   simply folding a sheet of paper."

   In Flash 1500 energy absorbing crush in this story's lead image, the
   bends are twice the strength of the DP780 cans in cars today.

   Another major manufacturer "that makes 10 million vehicles per year,"
   according to Cola, tested Flash-processed steel on a structural/safety
   component of a car that is 3 mm thick and 3 lb (1.4 kg) in weight in
   its current form. Using the flash treatment, a part was created that
   weighs 2 lb (0.9 kg) at 2 mm thick, and passes all the same tests - and
   the OEM estimated it could be made at a cost savings.

   There are [5]only three OEMs that can claim that kind of manufacturing
   capacity in the world. Only one of them is headquartered in Detroit
   where the Flash Bainite team is based, and it conveniently happens to
   be locked in [6]a war of words with a competitor that has chosen to go
   to aluminum truck bodies instead of steel. Cola notes, "while aluminum
   is good for hoods, decklids and door skins, Flash offers higher
   strength per pound for structural safety components."

   In short, Flash Bainite is starting to look suspiciously like the real
   deal, pointing the way towards significantly lighter cars that are less
   expensive and more environmentally friendly to produce, and every bit
   as safe in a crash - and of course, that's just in the automotive
   world.

   Another factor in Flash's favour is an extremely low capital cost of
   entry for companies looking to get involved in the manufacturing
   process.

   "The entry point for Flash equipment is about US$300K and a one car
   garage, while large format equipment would only cost $5M to generate
   about $75M in annual sales," Cola tells us. "Imagine if 100s of
   fabrication shops around the country could make higher performing steel
   than the Big Steel Industry can in their $400M seven-story tall
   furnaces."

   Having said that, there's currently no large scale manufacture up and
   running. Cola and the Flash Project team are working toward developing
   their own commercial manufacturing operation, but hoping to license the
   Flash technology to other entrepreneurs to get it out into the market.
   If the business side is managed well, this looks like a genuinely
   disruptive shift in manufacturing. We'll keep an eye on it!

   Larry (can you weld it?) - Cleveland

References

   1. http://www.gizmag.com/stronger-steel-in-a-flash/18882/
   2. http://amp.digitaledition.asminternational.org/i/211830-nov-dec-2013/50
   3. http://www.asminternational.org/documents/10192/17082024/Pages+from+HTPro_December_2013_amp17111.pdf/61afa899-7863-4f83-9d5e-a7caa5e22eba
   4. http://webcache.googleusercontent.com/search?q=cache:De5vc6d6YPYJ:www.dtic.mil/get-tr-doc/pdf%3FAD%3DADA588144+&cd=5&hl=en&ct=clnk&gl=au
   5. https://en.wikipedia.org/wiki/Automotive_industry
   6. http://www.fool.com/investing/general/2015/08/16/how-general-motors-will-compete-with-fords-aluminu.aspx


More information about the DeTomaso mailing list